Signed distance fields for polygon soup meshes

نویسندگان

  • Hongyi Xu
  • Jernej Barbic
چکیده

Many meshes in computer animation practice are meant to approximate solid objects, but the provided triangular geometry is often unoriented, non-manifold or contains self-intersections, causing inside/outside of objects to be mathematically ill-defined. We describe a robust and efficient automatic approach to define and compute a signed distance field for arbitrary triangular geometry. Starting with arbitrary (non-manifold) triangular geometry, we first define and extract an offset manifold surface using an unsigned distance field. We then automatically remove any interior surface components. Finally, we exploit the manifoldness of the offset surface to quickly detect interior distance field grid points. We prove that exterior grid points can reuse a shifted original unsigned distance field, whereas for interior cells, we compute the signed field from the offset surface geometry. We demonstrate improved performance both using exact distance fields computed using an octree, and approximate distance fields computed using fast marching. We analyze the time and memory costs for complex meshes that include self-intersections and non-manifold geometry. We demonstrate the effectiveness of our algorithm by using the signed distance field for collision detection and generation of tetrahedral meshes for physically based simulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient projection based optimization methods for untangling and optimization of 3d meshes in implicit domains

Definition of complex domain as zero isosurface of scalar function resembling signed distance function is powerful and flexible mechanism of geometric modeling. Signed implicit functions can be constructed using surface triangulation, point clouds, set of planar cross-sections, “soup” consisting of disjoint edges and faces, and can be combined with analytical definitions and primitives using bo...

متن کامل

Line-Stepping for Shell Meshes

This paper presents a new method for creating a thick shell tetrahedral mesh from a triangular surface mesh. Our main goal is to create the thickest possible shell mesh with the lowest possible number of tetrahedrons. Low count tetrahedral meshes is desirable for animating deformable objects where accuracy is less important and to produce shell maps and signed distance fields. In this work we p...

متن کامل

Walking On Broken Mesh: Defect-Tolerant Geodesic Distances and Parameterizations

Efficient methods to compute intrinsic distances and geodesic paths have been presented for various types of surface representations, most importantly polygon meshes. These meshes are usually assumed to be well-structured and manifold. In practice, however, they often contain defects like holes, gaps, degeneracies, non-manifold configurations – or they might even be just a soup of polygons. The...

متن کامل

Interactive Ray-tracing Based on OptiX to Visualize Signed Distance Fields

We propose a parallel ray-tracing technique to visualize signed distance fields generated from triangular meshes based on NVIDIA OptiX. Our method visualizes signed distance fields with various distance offset values at interactive rates (2–12 fps). Our method utilizes a parallel kd-tree implementation to query the nearest triangle and the sphere tracing method to visualize the implicit surface.

متن کامل

Continuous Collision Detection Between Points and Signed Distance Fields

We present an algorithm for fast continuous collision detection between points and signed distance fields. Such robust queries are often needed in computer animation, haptics and virtual reality applications, but have so far only been investigated for polygon (triangular) geometry representations. We demonstrate how to use an octree subdivision of the distance field for fast traversal of distan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014